Experimental Identification of the Mechanical Parameters of an Induction Motor Drive

نویسندگان

  • Dejan D. Reljić
  • Dejan G. Jerkan
چکیده

In order to obtain fast dynamic response performance of an induction motor drive, the identification of mechanical parameters such as the drive inertia and the coefficients of friction, with a good accuracy, is highly desirable. They are essential for the design of the high-performance induction motor drive speed, as well as position controllers and speed observers, since a drive response is influenced not only by load disturbances but also by these mechanical parameters. Moreover, they are of great importance for the accurate dynamic modeling and simulation of various high-performance induction motor control strategies. In this paper an experimental off-line method for the mechanical parameters identification is presented. The method uses speed-time curve, obtained during the retardation test on the drive, with an appropriate mechanical losses model of the drive, and the mean squared error performance function based on a genetic algorithm (GA) approach, to obtain unknown mechanical parameters of the tested drive. The proposed method is verified by experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel MRAS Based Estimator for Speed-Sensorless Induction Motor Drive

In this paper, a novel stator current based Model Reference Adaptive System (MRAS) estimator for speed estimation in the speed-sensorless vector controlled induction motor drives is presented. In the proposed MRAS estimator, measured stator current of the induction motor is considered as a reference model. The estimated stator current is produced in an adjustable model to compare with the measu...

متن کامل

Sensorless Speed Control of Switched Reluctance Motor Drive Using the Binary Observer with Online Flux-Linkage Estimation

An adaptive online flux-linkage estimation method for the sensorless control of switched reluctance motor (SRM) drive is presented in this paper. Sensorless operation is achieved through a binary observer based algorithm. In order to avoid using the look up tables of motor characteristics, which makes the system, depends on motor parameters, an adaptive identification algorithm is used to estim...

متن کامل

Robust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers

In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...

متن کامل

Design, Modeling and Experiments of An In-pipe Magnetostrictive Impact Drive Mechanism

This paper presents a magnetostrictive in-pipe impact drive mechanism (IDM). To estimate the output performances of the IDM, a dynamics model was developed based on the magnetostrictive material constitutive model and mechanical model of the IDM. Therefore, an experimental system has been built to test the motion performance of IDM. Simulation and experimental results illustrate that the propos...

متن کامل

Increasing the Efficiency of the Power Electronic Converter for a Proposed Dual Stator Winding Squirrel-Cage Induction Motor Drive Using a Five-Leg Inverter at Low Speeds

A dual stator winding squirrel-cage induction motor (DSWIM) is a brushless single-frame induction motor that contains a stator with two isolated three-phase windings wound with dissimilar numbers of poles. Each stator winding is fed by an independent three-phase inverter. The appropriate efficiency of this motor is obtained when the ratio of two frequencies feeding the machine is equal to the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015